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Travelling wave solutions to nonlinear evolution and wave 
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2 J Yang 
Department of Physics. Dalhousie University, Halifax, NS. Canada B3H 3J5 

Received 18 October 1993, in final form 15 Feburary 1994 

Abstract. We have studied a series of (ansme) ordinary differential equations of the fint 
order, which correspond to the Vavelling (and/or solitary) wave solutions of some nonlinear 
partial differential equations. We have investigated the conditions. under which the nonlinear 
partial differential equations have certain kinds of travelling (and/or solitary) wave solutions. 
As a consequence of applications, we cnn take the trial procedures to obtain the travelling 
wave solutions. which is a very efficient method for solving several classes of nonlinear partial 
differential equations. 

1. Introduction 

Nonlinear evolution and wave equations are special classes of partial differential equations, 
which have been studied intensively for the past decades (e.g. see two recent books [I, 21). 
When a nonlinear partial differential equation is used to describe a physical parameter which 
shows some kinds of propagation or aggregation properties, one of the important physical 
motivations is to solve the partial differential equation with the travelling (and/or solitary) 
solutions. However, due to the complexity of the mathematics, there are few exact travelling 
solutions obtained by limited techniques [1-14]. 

As far as the travelling solutions are concerned, one can always use the transform: 

& - = x - c r  

thus, the nonlinear partial differential equation will be simplified to a nonlinear ordinary 
differential equation. However, solving the nonlinear ordinary differential equation is also 
a very difficult target to achieve. 

Hereman and co-workers [9] recently introduced an algebra approach to obtaining the 
travelling (and/or solitary) wave solutions. Their method is straightforward, but has difficulty 
in summing a series of expansion related to the recursion relations of the coefficients. 

Using a special nonlinear transform Wang et al [l I] obtained a travelling solution to a 
generalized Fisher equation. Assuming the solution to be a polynomial of hyperbolic tangent 
functions, Lan and Wang [I21 obtained the exact solutions for two nonlinear evolution 
equations. However, their approach is restricted for the special problem. It is difficult to 
extend their method to more general nonlinear evolutiodwave equations. 

Quite recently, Lu and co-workers [13] introduced the Bernoulli equation as an ansatz 
to solve some nonlinear diffusion equations. Through simple algebraic calculations, they 
obtained the travelling wave solutions to the Newell-Whitehead equation, the generalized 
Burgers-Fisher equation, and the generalized Burgers-Huxley equation, etc. Inspired by 
Lu et al's work, we have studied a series of new ansatze, which can be related to some 
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nonlinear evolutiodwave equations in a more general sense. Applying this approach, we 
have obtained several new travelling (and/or solitary) wave solutions to some generalized 
Korteweg-de Vries (KdV) equations, generalized Burgers equation, and modified sine- 
Gordon equations, etc. We report these results in this paper. 

This paper is arranged as follows. We present a series of ansatze whose solutions 
correspond to the general nonlinear evolution and wave equations in section 2. The examples 
presented in section 3 show how to obtain the travelling (and/or solitary) wave solutions 
through trivial algebraic operations. Section 4 is a brief discussion and outlook about the 
further extension to the study of nonlinear evolutionlwave equations for high-dimensional 
systems and a coupled nonlinear evolutiodwave equation system. 

2. Ansatze and solutions 

Let us consider the following nonlinear partial differential (evolution/wave) equations: 

f l (u)ur  + f Z ( U ) U x  + f 3 ( u ) u r t  + f4(u)urx + f S ( U ) U x x  + f6(u)u: + f7(u)urux + fS(u)U: 

+f9(u)urtt + fiO(U)%tX + fIl(~)~,Xl + fi2(u)U*xx + f i3(u)ururr  

+fl4(u)uaux + fIS(U)Uiuxx + fl6(U)UxUxx + fl7(U)U: 

+fls(u)u:u, + f19(u)uruZ + f7.o(u)u2 + ' ' ' = g(u)  (1 )  

where J (u)  (i = I ,  2,3 ,  . . .) and g(u)  are algebraic functions of U (such as polynomials, 
rational functions, and triangle functions etc), U!  = aufar, and U, = au/ax, etc. Since we 
are only interested in the travelling (and/or solitary) wave solutions, we let 

e = x - c r  (2) 

where c is the speed of the propagating waves. Equation ( I )  is thus transformed to a 
nonlinear ordinary differential equation as 

[-4 + fzlu' + [C*f3  - cf4 f fslu" + Ic2fa - cf7 + fSl(U'Y 
+[-c3f9 + C2fIO - C f l l  + f I Z l ~ " '  

+[-c3 f l 7  + CZfIS - CfI9 + f"3 + " '  = g(u) . 
+[-C3fi3 + C z f i 4  - cfl5 + f lS lU'u" 

(3) 

In fact, it is almost impossible to solve this nonlinear ordinary differential equation for 
a general consideration. We now look for some typical travelling (and/or solitary) wave 
solutions which are well defined. 

2.1. Case 1 

For a general consideration of hyperbolic cosecant function solutions, we consider the ansatz 

where U, a, and b are real numbers, and U > 0. Through integration, we obtain the solution 
as 

(5) U ( ( )  = Q sech"(b4 + CO) . 
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Thus, we have 

U“ = u2bZu[l - ( 1  + .!)(;)2’”] = -dw ub 
[ 1 - ( l + ~ ) ( ; ) 2 / ” ] u ’  

u(4) = -b3 [ u 3 - 2 ( v + I ) ( 2 + 2 u + u ~ )  

U’” = u2b2 [ 1 - 
v 2  

JCTimF 

+ (U + I)(u + 2 ) ( ~  + 3) 

u4 - 2 ( ~  + l ) ( ~  + 2)(2 + 2~ + U’) 

+ ( v  + l ) (u  + 2)(u + 3 ) ( u  + 4)( : ) 4 ” ” ] u ~  

2.2. Case2 

Similarly, for a general consideration of hyperbolic tangent function solution, we consider 
the following ansatz: 

U‘ = ubu( ;)””[ 1 - (%)””] (7) 

where a ,  b, and v are real numbers. and U > 0. The solution is 

u ( 6 )  = a  tanh”(b6 + C O ) .  (8) 

This solution can be considered as a special case of the trial solutions suggested by Lan 
and Wang [12],  Thus, we have 
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(U - I)(u - Z)(U - 3) - (U - 1)(2- 3u + 3”’) 

. .  
Substituting these results into (3) yields 

+ vbu(E)” ” [  I - ( ~ ) y ” ] ( c z f 6  - cf7 + fs) + . . . 1 
2.3. Case 3 

For the ansatz (Bernoulli equation) 

u’ = au +bun (10) 
where a, b, and n are real numbers, ab < 0 (here, this condition can be extended to the 
case ab > 0 for some special case, e.g. see example 9 below), n # 1, and its solution 

have been introduced to study a particular diffusion equation by Lu et a1 [13]. We now 
present a more general result. 

From the ansatz, we have 
U“ = (a + bnu”-‘)u‘ = a’ + ab(n + 1 ) d - I  + bznu2”-’ 

U”‘ = [a2 + abn(n + l)u”-’ + bzn(2n - I ) U ~ - ~ ] U ’  

. .  
Thus, equation ( I  1) is a solution to (3), if and only if the coefficient functions satisfy the 
relationship 

I f 2  - c f~  + (a + bnun-’)@f3 - cfa + fd 
+(au + bU“)(Czf6 - cf7 + fs) + .. ,](nu + bun) g(u)  . (12) 

2.4. Case 4 

We introduce the ansatz 
U’ = a0 + all4 + azuz (13) 

i.e. the Riccati equation with real constant coefficients. When Q = 0, it  is a special case of 
(10) for n = 2, and was introduced by Wang et al L111. However, it is distinguished from 
them when a0 # 0. Its solutions can be expressed as 



Solutions to nonlinear wave equations 

for A = 4aoaz - U: > 0, and 

for A = 4maz - U :  c 0. Since we have 

U" = (a1 + 2azu) U' 
U"' = (2aoaz +a: + 6alazu + 64~') U' 

2.5. Case 5 

For a general consideration of triangle function solutions, we consider the ansatz 

where a ,  b, and U are real numbers, and U > 0. Through integration, we obtain the solution 

U({) = a  sin"(b: + C O ) .  (18) 

as 

Thus, we have 

u"=-uzb2u[I - (1 -:)(:)""I 
- -  "b [ I  - ( I  - +) (:)''"I U' 
- J7ZpKi 

. .  

Substituting these results into (3) yields 
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2.6. Case 6 

We now consider an ansatz related to the hyperbolic cosecant function solution: 

ut = - u b u , / q  

where U, U ,  and b are real numbers. Through integration, we obtain the solution as 

U(() = U  cosech”(bt + CO) .  (21) 
Thus, we have 

. .  
Substituting these results into (3) yields 

2.7. Case 7 

Consider the following ansatz: 

U = -  , ubu ( u ) ” I ”  - sin [ 2 (;)‘/”I - 
2 u  

where U, a, and b are real numbers. Through integration, we obtain the solution as 

U ( ( )  = a tan-’ ”[exp(bf + CO)]. (24) 
Thus, we have 

u “ ’ = ~ ( ~ ) Z ~ ” ( ( y -  8 u  l ) (u -2 ) - (u - l ) (v -2 )cos  

+6(w - 1) ( f )”” sin [4( i) I/”] + 8( :)”” cos [4( f )””I )U’ 



Solutions to nonlinear wave equations 2843 

Substituting these results into (3) yields 

+ ~ ( ~ ) “ “ s i n [ 2 ( ’ ) ” ” ] )  

ubu (a ) ’ / ’  [ (;)””I +... } sin 2 - +(czfs - cf7 + f s ) l  ; 

x- vbu(;)’’” 2 - sin [ 2 (;)’/”I - g(u ) .  (25) 

2.8. Case 8 

We consider the following ansatz: 

U‘ = -ubu(~) ‘ / ” s in ’ [ (~ )”” ]  (26) 

where v ,  a, and b are real numbers. Through integration, we obtain the solution as 

Thus. we have 

U“ = b 2 w  (:)’I” sin3 [ (:) ””1 [ 2(  :)I/” cos [(:)””I t (U - I )  sin [ (3””] 1 
= -bsin [(:)””I  S COS [ (:)””I + (U - i ) ( ~ ) ” ” s i n  [ (:)””I )U‘ 

(a)yu sin2 ‘’”1 1 ( u  - l ) ( u  - 2) + 4 - (I>’’” u ~ ~ ~ = -  - 
2 u  

-(U - I)(u - 2) cos [2( z)””] + 8( :)”” cos [2( :)””] 
+6(u- 1 ) ( ~ ) ” ” s i n [ 2 ( ~ ) ” ” ] ) ~ ~  

. .  
Substituting these results into (3) yields 

(“) 1’” [ (” ) ””1 

-vbu(c’fs - cf7 + fs) (“)’/” ; sin2 [ (!!) ‘7 + . . . } 

fz - cf, - b(c’f3 - cf4 + f5) sin - 
a 

x@(:)’’”cos [(’)’’”I + ( u  - ,)sin[(’)’’”]) 

I 

~ u b u ( ~ ) 1 ’ ” s i n 2 [ ( ~ ) ’ ’ u ]  - g ( u ) .  
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2.9. Case 9 

The following is also a triangle function ansatz: 

where a,  b and U are real numbers. Its solitary solution can be obtained as 

U(:) = acot-l(b: +CO)”. (30) 
Thus, we have 

U“ = -b[ 1 + U cos ($)I tan’/” (i) U‘  

The coefficient functions satisfy the relationship 

(’)I tan!/’ (:) 
- (c2fs - cfi + fs), abv sin , (F) (tan :)”” + 

x - s i n  abv . (2)(m;)”” - e -g(U). 2 

3. Examples 

We now will use the trial procedure to obtain the travelling wave solutions to some nonlinear 
evolutionlwave equations. 

Example 1. For the first example, we study a generalized KdV equation 

U !  f 8U‘  U x  + Y U x x x  = 0 (32) 
where (Y and are positive real numbers. This equation reduces to the original KdV equation 
and a modified KdV equation for 01 = I .  2, respectively. Verheest [4] derived the gKdV 
equation with (Y = 3 for describing the propagation of ion-acoustic waves at critical densities 
in a multi-component plasma with different ionic charges and temperatures. Schamel 1.51 
derived the gKdV equation with 8 = 1 and (Y = 1 for describing ion-acoustic waves in a 
cold-ion plasma but where the etectrons do not behave isothermally during their passage of 
the wave. To our knowledge, there is no report about the general case for 01 w 0. 

Since it is a homogeneous equation and its coefficients are polynomials of U ,  first, we 
consider that case 1 may be applicable to this problem. Suppose that its solution can be 
expressed in the form of (9, some algebra calculation yields the solitary solution 

It requires c / y  > 0. It is clear that this solution is consistent with the results for (Y = 1 and 
2 PI.  
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Second, we consider case 2 may be applicable for 01 = 1, 2.  So that the solution can be 
expressed in the form of (8). We now determine the parameters, a. b, and U ,  by comparing 
coefficients. Thus, (9) can be expressed explicitly as 

Z/” 
( U  - I)(v - 2)(: )  - 2vz + ( v +  I)(u+2) (U)’/”] 0. (34) 

This equation yields the equation system for U = 2/01 = 1.2: 
C 

c + 2ybZv2 = 0 and p - (U + I ) ( U  + 2)- = 0 2aZIVvZ 
The solutions are 

1 a = [&(CY + l)(ff + 2) 

It requires c / y  < 0 when a and b are real numbers 

Example 2. The second example is another generalized KdV equation: 

U, + Bu“ ux + yuiuxu,, +&U,, = 0 (35) 

First, we consider 01, r > 0, and try to use the solution in case I .  We assume the 
where 01, p and T are real numbers. 

solution can be expressed in the form of (5). Thus, substituting it into (6) yields 

If B. y ,  6, U. c > 0, this equality requires 

0 1 = ~ + 1 + 2 / u  and ~ + 1 = 2 / u  

and 
Sbzvz - c = 0 

Under the condition 01 = 2(s + 1) the solutions are 

B - yb2a-*/”v(u + 1) = 0 ybZu2 - 6bZa-””(v + I)(u + 2)  = 0 .  

v = 2 / ( r  + 1) a = (r + 2)(r + 3)- 

We now study the solutions matching case 2. Thus, the solution may be expressed in 
the form of (8). Substituting it into (9) yields 

,3u’-c+yvb U .+I[(. - -2u + (U + 
2/” 

(u-I)(v-Z)(:) - 2 u Z + ( ~ + 1 ) ( v + 2 )  (3”’”] - = 0. (37) 

In the following, we consider three cases: (1) U = 1, (2) U = 2, and (3) U # I ,  U # 2. 
(1) U = 1. Thus, the (a/u)’terms vanish. The equality requires 

T = 1  and ci = 4 .  
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In this case, for 8 < 0 and 6 ,  y > 0, we have the solutions 

(2 )  = 2. For a = 2, r = 0, and p 6  < 0, we have the solutions 

(3) lJ f 1, # 2. 
(3a) There is no solution for a!, r > 0. 
(3b) For a > 0 and c > 0, if and only if 

r = - I  
S < O  y > O  and 6 + y < O  

a = 2 / u  = (6 + y ) /S  > 0 

the equality can be true. In this case, the solutions are 

Exampk 3. Let us consider a generalized Benjamin-Bona-Mahony equation: 

U, + (@U" + I)u, - Y U l , ,  = 0 (38) 
where 0, p and y are positive real numbers. When 01 = 1 and y = I ,  it reduces to the 
original Benjamin-Bona-Mahony [3] equation. 

We consider applying case 1 to this equation, i.e. assuming the travelling solitary solution 
can be expressed in the form of (5). Substituting the coefficient functions into (6) yields 

Letting v = 2 / a ,  we obtain 

and b = & -  - 
a = [  2B 1 aJ"". 2 CY 

(c - I)(a + I)(a + 2)  'IU 

That a and b are real numbers requires c z 1. 

Example 4. Let us consider a generalized Joseph-Egri equation: 

ur + ( B U U  + i)u, + yurtx = 0 (40) 
where a, p and y are real numbers, and a. y > 0. When a! = y = 1 and 8 > 0, it reduces 
to the original Joseph-E@ equation. 

When p > 0, we consider applying case 1 to this equation, i.e. assuming the travelling 
solitary solution can be expressed in the form of (5). Substituting the coefficient functions 
into (6) yields 
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Letting w = 2 / a ,  we obtain 

When p i 0, we apply case 6, and obtain the solution as 

]"a cosech2'la [ k - tcc - ( x  - c t )  + c0 ] , (42) 
(c - I)(a + l)((Y + 2) u(x - C t )  = 

For both cases. that a and b are real numbers requires c z 1. 

Example 5. Let us consider a generalized fifth-order KdV equation, which reads 

U,  + 8 U "  Y K x x x  + 6 U x x x ~ ~  = 0 (43) 
where (Y > 0, p, y < 0 and 6 are real numbers. We apply case I to this equation, i.e. 
assuming the solution can be expressed by (5 ) ,  substituting it into (6)  yields 

u4 - 2 ( ~  + I ) ( w  + 2)(2 + 2~ + w * )  

Letting w = 4/01. we have the equation system: 

c - yb2v2 - 6b4w4 = 0 
y + 26b2(2 + 2w + u2)  = 0 
B f 6b4(w + I ) ( w  + 2)(w + 3)(w + 4)a-u = 0 

The solutions are 

-?(E f l ) (a  + 2)(3a +4)(0r + 4) ' Ia 

a = [  2@6(8 + 4a + cz2)* 1 
Exampre 6. We now also consider another fifth-order KdV equation, which reads 

uc + & ( I  + PuU)u" ux + yu,,,, = 0 (45) 
where a, y ,  S > 0 and 8 < 0 are real numbers. Applying case 1 yields the equation 

6 ( 1 + f i ~ " ) ~ ' - c + y b  - 2 ( ~ - t I ) ( v + 2 ) ( 2 - i - Z ~ + ~ ' )  

Letting w = 2/aV we havpe the equation system: 

c - yb4u4 = 0 
6 - 2yb4(u + l ) (u  + 2)(2 + 2v + U ' ) U - ~  = 0 
p6 + yb4(w + l ) ( w  + 2)(w t 3)(u t 4)a-& = 0 .  
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The solutions are 

-(2 + 3a)(I + 2a) ' Iu 

a = [  2 8 ( 2 + k + ( Y 2 )  1 
-6(2+301)(1 +k) 

BY (a + l)(a + 2)(2 + k + a2)2 

-6(2 + 3a)(l+ k) 

b = i -  
2 "[ 

C =  
B(a+ I ) ( (Y+2)(2+k+a2)2'  

ut + Bu" U, + yuru; + 6u"u, + .%2x = 0 

Example 7.  We now consider a generalized Sharma-Tasso-Olver equation: 

(47) 

where a ,  p ,  y ,  6, t, r and a are real numbers. When (Y = 2, j3 = y = 6 = 3, T = 0, 
a = 1, and 5 = 1, it reduces to the original Sharma-Tasso-Olver [6] equation. 

First, we consider applying case 2 to this equation, i.e. the solution is assumed to be in 
the form of (8). Substituting the coefficient functions into (9) yields 

pu" - c + ywbu'+' [ (t j I/" - (s) I/"] + 6bu" [ (U - 1 )  (; j I/" - (w + I )  (y"] 
- 2 ~ * + ( ~ + l ) ( ~ + 2 )  (:)""I - = 0. (48) 

For simplicity, we only consider three cases: (1) U = 1, (2) U = 2, and (3) U # 1. 
U # 2. 
( I )  w = 1. The equation of coefficient functions is simplified to be 

pu' - c - 2Sa-'bu0'+' + ybur+' (au-' - a-lu)  - q b z ( l  - ~ U - ~ U ~ )  0. (49) 

In the following, we only discuss some typical cases, 
( l a )  (Y = 0, a = 1. r = 0. We have the equation system 

B - c + yab  - 2:b2 = O  6.$a-'b-Z - y = 0. 

The solutions are 

It requires that (B - c)/(6 - y )  > 0 for a and b real numbers. 
( lb)  a = 1, U = 0, T = 0. We have the equation system: 

,8 - 26a-'b = 0 6 f a - l b -  y = O  y a b  - c  - g b 2  = 0 

The solutions are 
- 

3 
Y 

a = & - f i  and 

It requires that 6y = 3p:. 
(IC) (Y = 2, U = 1, r = 0. We have the equation system: 

p - 26a-'b - ya- 'b  + 6ta-'b2 = 0 yab  - c - 2:bZ = 0. 
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We obtain the eight sets of solutions as 

185c 
658 - (6 - ~ ) [ 2 6  + Y * J(26 + Y)’ - 24861 

al.2 = a3.4 = 

2849 

2s + Y + J(26 + r)Z - 2485 
46 

bS.6 = - 

It requires 26 < 5 y .  
(16) a = 4, U = 1, 5 = 2. We have the equation system: 

p - ya-lb = 0 yab - 26a-’b + 6Fa-’b2 = 0 c + X b 2  = 0 .  

When y6 t 385, the solutions are 

(2) U = 2 The equality becomes 

(50) 

Similarly, we  also only consider a few typical cases. 
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(2a)  01 = 0, U = -r = - ;. We have the equation system: 

The solutions are 

It requires (8 - c)/(36 - 2 y )  > 0 for b a real number. 
(2b) (Y = 1, U = -T = &. We have the equation system: 

8 - 3 S b / & - Z y b / & +  12$b2/a=0 6 & b - c - 8 f b 2 + 2 y & b = 0 .  

The four sets of solutions are 

2 y  + 36 f J(2y + 36)' - 4885 
4E b1,z = 

%c 
X 

4y2 - 96' + 4885 f ( 2 ~  - 36)J(2y + 36)' - 4885 

2$C 

' / 4 y 2  - 98' + 4885 f (2y - 36),/(2y + 36)2 - 4885 ' 

It requires (2y + 36)' 
forms: 

4886. When (2y + 36)* = 4886, the solutions have the simple 

1Stc 

Y (2Y + 3 4  
a =  and b = f -  

(2c) 01 = 2, U = r = i. We have the equation system: 

8 - 2yb/& = 0 2y& - 36/&+ 1 g b / a  = 0 

The solutions are 

S&b - 86b2 - c = 0 

It requires 6 y  > 2s: for b a real number. 
(3) v # I ,  v # 2. This case is very complicated in general. We only discuss this case for 
special conditions: 8 ,  8 ,  y,  6 > 0. 

If 01 = Z / v ,  -a = r + 1 = I /v ,  we have the equation system: 

p - y v b / a l l " + ( ( v  t l ) ( u + 2 ) b Z / a 2 ~ Y = 0  
6 + 5(u - 2)a'l"b = 0 
y v a 1 ~ " b - 2 u 2 ~ b 2 - c - 6 ( u + 1 ) b / a ' ~ " = 0 .  
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The four sets of solutions are 

Y S(a2 + 5cf + 2)  
Z$(ffZ - l ) ( U  + 2)  ' 

b = & -  C =  
2.5 - J  (a2 - I)(a 6y  + 2) 

[ 6 ( c f + I ) ( a + 2 ) ] " "  
Y(cf - 1) 

Second, we consider applying case 3 to this equation, i.e. assume that the solution can 
be expressed in the form of ( I  I). We now determine the three parameter, a, b, and n. 
Substituting the coefficient functions into (12) yields 

flu" - c + &P(a + nbu"-') + yui(au + bun) 
+6[aZ + nbn(n + I)u"-l + b2n(2n - I)U~"-~] = 0. (51) 

For arbitrary values of 01, U ,  and 5, it is very complicated. Thus, we only consider a special 
case: 01 = U  + n - 1 = 5 + n = 2n - 2. In this case, we have the equation system: 

p +6bn+ y b  +pbzn(2n - I )  = 0 
6 + y +bbn(n + 1 )  = 0 
pa - c = O .  2 

When [2y+6(a+2)l2 = Bpt(a+l)(01+2) and 8(a+1)(6+y)  = (a+4)[2y+6(01+2)1, 
the solutions are 

Example 8. We consider a generalized KuramotoSivashinski equation: 

ui + /sua U, + yuru,, + 6U,m = 0 (52) 

where a, p ,  y ,  6, and T are real numbers. When a = I, p = 1 ,  and r = 0, it reduces to 
the original KuramotGhashinski [ 141 equation. The KS equation occurs in the context of 
modelling chemical reaction-diffusion phenomena, flame-front instability, propagation of 
long waves on a thin film or on the interface between two viscous fluids. It also serves as 
a simple model for chaos. 

We consider applying case 3 to this equation, i.e. the solution may be expressed in the 
form of (1 1). Thus, (12) can be explicitly expressed as 

@U" - c + yur(a + bnu"-') + 6[a' + azbn(n2 + n + l)u"-' 
+3ab2n2(2n - 1)u2"-* + b3n(2n - 1)(3n - 2)u3"-'] 0. (53) 
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This is very complicated in general. We only discuss a special case: r = n - I and 
a = 3s = 3n - 3. In this case, we have the equation system: 

p + 6b3n(2n - 1)(3n - 2) = o 
y + 6abn(nz + n + 1) = 0 

3 6a - c = o 
y + 36abn(2n - 1) = 0 .  

If and only if when n = 4, there are real number solutions for a, b and c, which read 

Example 9. Let us consider the Splading equation: 
ut - flurx = K(u’+’ + u ’ + ~ )  (54) 

where p and I are real numbers, but I # 0. (It is a linear differential equation for I = 0.) 
We can apply case 3 to this equation and obtain the solution as: 

Here, it  requires K / p ( l +  1) < 0 in order for it to be a real function. (Note: parameters 
a = b and ab = - K / p ( I  + I )  0 in this example,) 

Example 10. We now consider a generalized Fitzhugh-Nagumo equation, which reads 

(56) 
where (Y, p ,  6 > 0 and y E [ - I ,  1). Applying case 3 to this equation, we obtain the equation 
system when n = 6 + 1: 

6 U ,  - auxx = f l u (  1 - U ) ( U 6  - y )  

~ ( c + ~ I Y )  - B y  = O  ~ b a ( 6  + 2 )  +bc+p(y  + 1) = 0 p - b2a(6 + 1) = 0 .  

Solving these equations, \ye finally obtain the two solutions, which read 

6 + 1  

(58) 

Example 11. We now consider a generalized KdV-Burgers equation 

U ,  + pu‘ ux - yu‘u,, + 6u,,, = 0 (59) 
where a, f l  and T are positive real numbers. It reduces to the Burgers equation for a = 1 ,  
y = 1 ,  r = 0. and 8 = 0. It also reduces to the KdV equation for IY = I, y = 0, and 8 = I .  

Let us consider applying case 4 to this problem. Substituting the coefficient functions 
into (16) yields 

Bum - c - yur(al + k z u )  + 6(2noaz +U:  + 6ala2u + 6a;u’) (60) 
For simplicity, we only study the equation for c, a, p ,  y. 6 z 0. Thus, we consider two 
cases: (1) (Y = r = 1 and (2) a = 2 r = 1. 
(1) a = T = 1. We have the equation system 

0 .  

B - yat +68a1az = O  2yaz- Ma: = 0 6(&s+a:) - c = O .  
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Some simple algebra yields 

Finally, letting A = 4aoaz -a:  = 2c/6 - 3B2/yz ,  we have the solution as 

(2) IY = 2, r = 1. We have the equation system 

B - 2yaz + 6Sai = 0 y a ~  - 66aia2 = 0 c - S(2aoaz +a:) = 0. 
If we choose a1 = 0, the solutions are 

If a,  # 0, and only if y z  = 6 B S, we have the solutions as 

Finally, letting A = 4aoaz - a: = 2c/S - a: for any real value of a1 # 0, we have the 
solutions as 

- C t )  +CO - - for A =- 0 (63) 1 '? u(x - c t )  = - 

3s- 
u(x - C t )  = -- 

Y 

tanh [ 9 for A < 0 (64) 
Y 

when a1 = 0, the solution is 

Example 12. Let us consider the following nonlinear wave equation: 

& c F ( u * t  - U X X )  + guu, = 0 (66) 
Applying the solution in case 5, it is easy to obtain the harmonic wave solution as 

(x-cf)-co . (67) 1 u(x - ct)  = IY sin 

Example 13. We also consider a generalized KdV equation: 

U, + Bu" ux + yu7u,, = 0 
where a, 0, y and T are positive real numbers. 

Let us apply case 5 to this equation, i.e. assume 

u(x - ct)  = a sin"[b(x - ct)  +col. 
Substituting it into (19) yields 
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When 2 /v  = a = 5,  we obtain the solutions 

a = [  2c 
- - 2)  

These results require that a # I and a # 2. 

Example 14. Consider a modified sineGordon equation: 

uxI  + yu, - U,, = cq sin(pu) + a2 sin(2pu) (71) 
where a ~ ,  az, p ,  and y are positive real constants. This equation may be regarded as a 
higher-order approximation compared with the original s i n d o r d o n  equation. Applying 
case 7 (let U = 1) to this equation, it is easy to obtain the solitary wave solutions as 

Example 15. Similarly, we consider a sine-Gordon-like equation: 

uxI + yur - U,, = a1 sin*(pu) + a~s in3(pu)cos(pu)  (73) 

where a,, a2. and ,9 are positive real constants. Applying case 8 or case 9 to this problem. 
it is easy to obtain the solitary wave solution as 

u ( x - c t )  = - p - ~ c o t - ’ [ ~ ( x * J ~ : ~ - ~ ~ y z  Y h : B  l - c o ) ]  (74) 

4. Discussion and conclusions 

From the above examples, it is clear to see that the single travelling solution to a nonlinear 
evolutionlwave equation could be obtained by a trial procedure with simple algebraic 
calculations. It could also be seen that the present method may be generalized for obtaining 
the multi-travelling solutions, which would be the next step to extend the applications of 
the technique to achieving the exact solutions to the nonlinear evolutionlwave equations. 

By introducing a series of ansatze, we have solved several classes of nonlinear partial 
differential equations, which are used in physical sciences. Through the presentations of 
various kinds of examples, we may achieve the following concluding remarks. 

(1) The present ansatz approach only involves algebraic calculations, which is much easier 
than the differential and integral derivations, compared with the previous methods. 

(2)  Using a simple trial procedure, we can determine the condition for the existence of a 
certain kind of solution. 

(3) From the examples given in this paper, one may see that the present method is quite a 
powerful tool for obtaining exact analytical solutions. 

The method used in this paper may be considered as a practical approach to obtaining the 
travelling (andor) wave solutions to nonlinear evolutiodwave equations. It can in principle 
be generalized to the investigation of coupled nonlinear evolutionlwave equation systems, 
which is beyond the scope of this paper. 

It is worthwhile pointing out that the method used and the solutions obtained in this 
paper can be generalized to higher-dimensional systems. 
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